Air change rates
Contents |
[edit] Introduction
Air is continuously exchanged between buildings and their surroundings as a result of mechanical and passive ventilation and infiltration through the building envelope. The rate at which air is exchanged is an important property for the purposes of ventilation design and heat loss calculations and is expressed in ‘air changes per hour’ (ach).
If a building has an air change rate of 1 ach, this equates to all of the air within the internal volume of the building being replaced over a 1 hour period.
[edit] Calculating air change rates
A number of techniques are available for calculating the air change rate of a building. The choice of method depends on the accuracy required. The most straightforward method relies on the use of a simple mathematical equation, while the most complex methods use computational analysis and consider many different variables (such as computational fluid dynamics).
The basic method calculates air change rates using the following equation:
n = 3,600 x q / V
Where:
n = Air changes per hour (ach)
q = Fresh air flow rate (m3/s)
Online air change rate calculators and tables are available for different room types, such as: https://www.electricalworld.com/en/Air-Change-Calculator-and-Table/cc-48.aspx
[edit] Measuring air change rates
Air change rates resulting from ventilation can be quantified by measuring the air velocity at selected positions within supply ducts. The velocities are normally measured using a pitot tube connected to a pressure gauge or manometer, or using a hot wire probe and meter.
Tracer gas measurement can be used to determine the average air change rate for naturally'-'ventilated spaces' and to measure infiltration (air tightness)'. To do this, a detectable, non-toxic gas is released into the space and the reduction in its concentration within the internal atmosphere is monitored over a given time period.'
For more information, see Air permeability testing.
[edit] Legislation and guidance
Specific air change rates are required in buildings to control internal temperatures and to introduce clean, oxygen-rich air and remove stale, humid air. The requirements will vary depending on a number of factors including; the type of space, the level of occupation and usage and the geographical location of the building.
In the UK, several legislative documents have been published that set appropriate standards for air change rates in different types of construction.
Approved document F sets out the minimum requirements for ventilation to provide comfortable conditions and to prevent surface and interstitial condensation. Approved document F expresses air change rates in a number of different ways:
- air changes per hour.
- litres per second (l/s).
- l/s per m^2 of internal floor area.
- l/s per piece of equipment.
- l/s per person.
For many types of building, the approved document simply refers to standards set in CIBSE Guide B: Heating, ventilating, air conditioning and refrigeration.
A wide range other guidance is also available, including CIBSE KS17: Indoor air quality and ventilation, which provides information about the required air change rates to achieve acceptable indoor air quality, and BS 5925: Code of practice for ventilation principles and designing for natural ventilation, which sets out recommended air flow rates for natural ventilation.
[edit] Related articles on Designing Buildings
- Air infiltration.
- Air permeability testing.
- Air quality.
- Air Quality Taskforce.
- Air tightness in buildings.
- Computational fluid dynamics.
- Draughts in buildings.
- Effective ventilation in buildings.
- Indoor air quality.
- Stale air.
- The history of non-domestic air tightness testing.
- UV disinfection of building air to remove harmful bacteria and viruses.
- Ventilation.
[edit] External references
- Building Regulations: Approved Document F – Ventilation.
- CIBSE KS17: Indoor Air Quality and Ventilation.
- CIBSE Guide B: Heating, ventilating, air conditioning and refrigeration.
- BS 5925: Code of practice for ventilation principles and designing for natural ventilation.
- https://www.electricalworld.com/en/Air-Change-Calculator-and-Table/cc-48.aspx
Featured articles and news
CIOB launches global mental health survey
To address the silent mental health crisis in construction.
New categories in sustainability, health and safety, and emerging talent.
Key takeaways from the BSRIA Briefing 2024
Not just waiting for Net Zero, but driving it.
The ISO answer to what is a digital twin
Talking about digital twins in a more consistent manner.
Top tips and risks to look out for.
New Code of Practice for fire and escape door hardware
Published by GAI and DHF.
Retrofit of Buildings, a CIOB Technical Publication
Pertinent technical issues, retrofit measures and the roles involved.
New alliance will tackle skills shortage in greater Manchester
The pioneering Electrotechnical Training and Careers Alliance.
Drone data at the edge: three steps to better AI insights
Offering greater accuracy and quicker access to insights.
From fit-out to higher-risk buildings.
Heritage conservation in Calgary
The triple bottom line.
College of West Anglia apprentice wins SkillELECTRIC gold.
Scottish government launch delivery plan
To strengthen planning and tackle the housing emergency.
How people react in ways which tend to restore their comfort.
Comfort is a crucial missing piece of the puzzle.
ECA launches Recharging Electrical Skills Charter in Wales
Best solutions for the industry and electrical skills in Wales.
New homebuilding skills hub launch and industry response
Working with CITB and NHBC to launch fast track training.